Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells.
نویسندگان
چکیده
We have previously reported that the expression of MAT2A (methionine adenosyltransferase 2A) is increased in human colon cancer and in colon cancer cells treated with IGF-1 (insulin-like growth factor-1), which was required for its mitogenic effect. The aim of the present study was to elucidate the molecular mechanisms of IGF-1-mediated MAT2A induction. Nuclear run-on analysis confirmed that the increase in MAT2A expression lies at the transcriptional level. DNase I footprinting of the MAT2A promoter region revealed a similar protein-binding pattern in colon cancer and IGF-1-treated RKO cells. IGF-1 induced MAT2A promoter activity and increased nuclear protein binding to USF (upstream stimulatory factor)/c-Myb, YY1 (Yin and Yang 1), E2F, AP-1 (activator protein 1) and NF-κB (nuclear factor κB) consensus elements. IGF-1 increased the expression of c-Jun, FosB, MafG, p65, c-Myb, E2F-1 and YY1 at the pre-translational level. Knockdown of p65, MafG, c-Myb or E2F-1 lowered basal MAT2A expression and blunted the inductive effect of IGF-1 on MAT2A, whereas knockdown of YY1 increased basal MAT2A expression and had no effect on IGF-1-mediated MAT2A induction. Consistently, mutation of AP-1, NF-κB, E2F and USF/c-Myb elements individually blunted the IGF-1-mediated increase in MAT2A promoter activity, and combined mutations completely prevented the increase. In conclusion, IGF-1 activates MAT2A transcription by both known and novel pathways. YY1 represses MAT2A expression.
منابع مشابه
Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells.
BACKGROUND & AIMS Two genes (MAT1A and MAT2A) encode for methionine adenosyltransferase, an essential enzyme responsible for S-adenosylmethionine (SAMe) biosynthesis. MAT1A is expressed in liver, whereas MAT2A is widely distributed. In liver, increased MAT2A expression is associated with growth, while SAMe inhibits MAT2A expression and growth. The role of MAT2A in colon cancer in unknown. The a...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملInduction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells
We previously showed that S-adenosylmethionine-mediated hypermethylation of the PTEN promoter was important for the growth of tamoxifen-resistant MCF-7 (TAMR-MCF-7) cancer cells. Here, we found that the basal expression level of methionine adenosyltransferase 2A (MAT2A), a critical enzyme for the biosynthesis of S-adenosylmethionine, was up-regulated in TAMR-MCF-7 cells compared with control MC...
متن کاملMethionine adenosyltransferase α2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells
Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and inhibits apoptosis via Bcl-2 by unknown mechanism. Methionine adenosyltransferase 2A (MAT2A) encodes for MATα2, the catalytic subunit of the MATII isoenzyme that synthesizes S-adenosylmethionine (SAMe). Ubc9, Bcl-2 and MAT2A expression are up-regulated in several malignancies. Exogenous SAMe decreases Ubc9 and MAT2A expressio...
متن کاملفاکتور القا شونده بهوسیله هیپوکسی: نقش آن در آنژیوژنز و سرطان
Angiogenesis, as the process of new vessel formation from pre-existing vessels is dependent on a delicate equilibrium between endogenous angiogenic and antiangiogenic factors. However, under pathological conditions, this tight regulation becomes lost which can result in the formation of the different diseases such as cancer. Angiogenesis is a complex process that includes many gene products tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 436 2 شماره
صفحات -
تاریخ انتشار 2011